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Background: Information Systems, increasingly central to the 
ƴŀǘƛƻƴΩǎ ŜŎƻƴƻƳƛŎ ǿŜƭƭ-being and security, are: large, 
distributed, continuously evolving, unpredictable, fragile and 
interdependent ς in a word, Complex 
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Motivation 

Problem I: How can we predict the 
effects on macroscopic behavior and 
user experience when new or revised 
components are injected into complex 
information systems? 
 

Problem II: How can we identify low-
probability combinations of conditions 
in complex information systems that 
will drive macroscopic behavior into 
extremely costly failure regimes? 
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ά¢ƘŜ ƴǳƳōŜǊ ƻŦ ǿŜōǎƛǘŜǎ ǘƘŀǘ ǿƻǳƭŘ ƴƻǿ ōǊŜŀƪ ƛŦ !ƳŀȊƻƴ ǿŜǊŜ   
to go down, and the growing pervasiveness of Amazon behind 
ǘƘŜ ǎŎŜƴŜǎΣ ƛǎ ǊŜŀƭƭȅ ǉǳƛǘŜ ƛƳǇǊŜǎǎƛǾŜΦέ Craig Labovitz, DeepField, 
quoted in WIRED ENTERPRISE. 

άLǘ ƛǎ ƴƻǿ ŎƻƳƳƻƴ ƪƴƻǿƭŜŘƎŜ ǘƘŀǘ .Dt ǊƻǳǘƛƴƎ ǇƻƭƛŎƛŜǎ Ŏŀƴ 
interact to produce unexpected routing anomalies such as 
protocol oscillation. We introduce a new class of anomalies, 
where routing is wedged into a local optimum that is very 
ŘƛŦŦƛŎǳƭǘ ǘƻ ŎƘŀƴƎŜΦέ Tim Griffin, Cambridge University 
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      Hard Problems 
Why is it difficult to understand & predict 
behavior in complex information systems? 

y1Σ ΧΣ ym =      f( xмμώмΣΧΣk]Σ ΧΣ xnμώмΣΧΣk] )

Model Response Space Model Parameter Space

For example, the NIST Koalasimulator of IaaSClouds has about n = 130 
parameters with average k = 6 values each, which leads to a model 
parameter space of ~10101 (note that the visible universe has ~1080 atoms) and the 
Koalaresponse space ranges from m = 8 to m = 200, depending on the 
specific responses chosen for analysis (typically m      45).

֪

Reason #1: System state space is immense!!

Why is it difficult to understand & predict 
behavior in complex information systems? 

Reason #2: Emergent behaviors are difficult to predict!!

For example, deploying new client 
software with a reasonable approach
to mitigate domain-name spoofing
attacks in a grid system resulted in
worse performance than ignoring the
attacks, because mitigating the attacks 
shifted the global schedule of job
executions.

Why is it difficult to understand & predict 
behavior in complex information systems? 

Reason #3: Highly improbable events are more
probable than we expect!!

Gaussian and Poissonianassumptions do not hold
in complex systems. Instead, the probability landscape
is better represented by heavy-tailed distributions, 
which means that highly improbably events occur 
more frequently than we assume. Such improbable 
events often lead to very expensive system-wide 
performance degradation or collapse.



How can we understand the influence of distributed control 
algorithms on global system behavior and user experience? 
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For more see: http://www.nist.gov/itl/antd/emergent_behavior.cfm 

           Past Research 2006-2011 

What to measure 

Under what conditions 

http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm  

At an affordable cost 
May 9, 2013 DARPA MRC PI Meeting 
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         Sample Techniques 

Use experiment design theory to reduce
parameter combinations to 256

Use sensitivity analysis
to identity six most
significant parameters

(232)1000

220

220-12

Discard parameters not germane to study ςreduce by 944 parameters

O(109633) [ 1080 = atoms in visible universe]

(232)56 O(10539)

(232)20 O(10192)

O(106)

256

Model Reduction

Experiment
Design Theory

26-1 32

Group related remaining parametersςreduce by 36 parameters

Select only 2 values for each parameter

Use experiment design theory again to reduce
parameter combinations to 32

Level Reduction

Sensitivity
Analysis

Parameter  
Reduction Techniques 

We identified an 8-dimensional response space within the 40 responses

Response 
Dimension 

SA1-small 
(9 dimensions) 

SA1-large 
(8 dimensions) 

SA2-small 
(10 dimensions) 

SA2-large 
(9 dimensions) 

Cloud-wide 
Demand/Supply 
Ratio 

y1, y2, y3, y5, 

y6, y8, y9, y10, 
y13, y23, y24, 
y25, y29, y30, 
y32, y34, y36, 

y38 

y1, y2, y3, y5, 

y6, y7, y8, y9, 
y10, y13, y23, 
y34, y25, y29, 
y30, y32, y33, 
y34, y36, y38 

y1, y2, y3, y5, 

y6, y8, y9, y10, 
y11, y13, y14, 
y15, y23, y24, 

y25, y38 

y1, y2, y3, y5, 
y6, y8, y9, 

y23, y24, 

y25, y38 

Cloud-wide 
Resource 
Usage 

y10, y11, y12, 

y13, y14, y15 

y10, y11, y12, 

y13, y14, y15 
y10, y11, y12, 

y13, y14, y15 

y10, y11, 

y12, y13, y14, 
y15 

Variance in 
Cluster Load 

y16, y17, y18, 
y19,y20, y21, 

y26, y27 

y16, y17, y18, 
y19,y20, y21, 

y26, y27 

y16,  y18, y19, 
y20, y21, y26, 

y27 

y16, y17, y18, 

y19,y20, y21, 

y26, y27 y17 (Mem. 

Util) 

Mix of VM 
Types 

y34, y35 (WS) 
y31 (MS) 

y12, y14, y15, 
y30, y31, y33, 

y34, y35, y36 

y14, y15, y30, 

y31, y33, 

y34, y35 

y31 (MS) y15, y36 (DS) 

Number of VMs y29, y37 y37 y29, y37 y29 
User Arrival 
Rate y4 y4 y4 y4, y37 

Reallocation 
Rate y7, y22 y7, y22 

y7 (cluster) 
y7, y22 

y22 (node) 

Variance in 
Choice of 
Cluster 

y28 y28 y28 y28 

 

Compute correlation coefficient 
(r) for all response pairs

Examine frequency distribution 
for all |r| to determine 

threshold for correlation pairs 
to retain; |r| > 0.65, here

Create clusters of mutually 
correlated pairs; each cluster 

represents one dimension

Select one response from each 
cluster to represent the 
dimension; we selected 

response with largest mean 
correlation that was not in 

another cluster*

*Not possible for cloud-wide resource usage in SA2-small, so we selected response with highest mean correlation.

Response Reduction Techniques 

Retransmission Rate

Conditions

Sorted Residual Analyses to Reveal Causality Cluster Analyses Over All Responses 

outliers 
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         Sample Results 

INTERNET 

INTERNET 

INTERNET INTERNET CLOUD 

CLOUD CLOUD 


